An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)
No matter where you end up in tech, you will need to explain concepts, products and ideas to people with different technical backgrounds. This course is intended to help prepare you for these communication tasks. Through the lens of tutoring, we will work on explaining technical ideas clearly and compassionately to others. We will do some theoretical study, including a history of CS education as well as brain and learning science, and some practice, including tutoring beginning students in CS. This course is intended for a broad range of students looking to pursue careers in tech, but will be particularly useful for those who are currently UCAs or intending to apply for UCA positions in the future.
An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)
An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)
An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)
Inspired by the Maker movement, this course provides a hands-on introduction to physical computing: sensing and responding to the physical world using computers. Specific topics include: basic electronics and circuit design, microcontroller programming using Arduinos, sensing and responding to the physical world, rapid prototyping (3D printing and laser cutting etc.), soft circuits and wearable electronics. The course will encourage and empower students to invent, design, and build practical hardware projects that interact with the physical world.
An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)
An introduction to computer programming and problem solving using computers. This course teaches you how real-world problems can be solved computationally using programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include variables, expressions, data types, objects, branching, iteration, functions, classes, and methods. We will also cover how to translate problems into a sequence of instructions, investigate the fundamental operation of a computational system and trace program execution and memory, and learn how to test and debug programs. No previous programming experience required. (Gen. Ed. R2)