The main objective of this course is to introduce students to basic concepts of microbial genetics. The course is intended to provide students with a broad exposure to several fundamental aspects of genetics through lectures, in-class discussion, assigned textbook readings, and study groups. Topics covered in this course will include DNA replication and repair, cellular structure and function, transcription, translation, protein secretion and degradation, gene regulation, genetic manipulation and analysis, the transfer of genetic material, and the use of mutations to dissect regulatory networks. This course will provide students with a solid foundation to continue studies in microbiology and related disciplines
Reports and discussion of pertinent literature and research. Required of all microbiology graduate majors each semester in residence.
Fundamental concepts of molecular genetics; from the central dogma to recent progress in DNA replication, recombination, and transposition, and mechanisms of gene regulation. Emphasis on design of experiments and interpretation of experimental data in microbial systems. Prerequisite: general background in biochemistry and molecular genetics.
Molecular biology of animal viruses and viral genetic systems; viral disease processes. Emphasis on polio virus, influenza, herpes viruses, the DNA tumor viruses. Prerequisite: background in cell biology, genetics, or biochemistry.
Neglected tropical diseases (NTDs) are a set of infectious diseases arising from a diverse group of parasitic worms, bacteria, and vector-borne protozoa that affect an estimated 1.4 billion people worldwide. These diseases affect the world?s most vulnerable populations, almost exclusively poor and powerless people living in rural areas and urban slums of low-income countries. NTDs coexist with poverty because they thrive where access to clean water and sanitation are limited and people live without protection from insects that transmit disease. They also contribute to poverty since they can impair intellectual development in children, reduce school enrollment, and hinder economic productivity by limiting the ability of infected individuals to work. Current control efforts focus primarily on mass drug administration (MDA) to treat the seven most common NTDs and has become one of the most cost effective global health programs to treat multiple diseases at once, in large part because major pharmaceutical companies are donating the needed medicines for free. End 7 is a global campaign to deworm the world and bring an end to 7 of the NTDs. Important questions exist related to this global health strategy: what might be the long-term benefits (and possible detriments) to a sustained global deworming effort? What other measures should be implemented in combination with MDA for sustained control? Satisfies one of the three required modules for the Integrative Experience requirement for BA-MicBio or BS-MicBio majors.
Over 70% of the Earth?s surface is covered with the oceans, and nearly all of the life within the ocean is microscopic. Some of these microbes are photosynthetic and form most of the base of the marine food web. These in turn are consumed by other small creatures that eventually provide food for the larger animals in the sea. Bacteria are responsible for maintaining certain chemical balances in the oceans, and themselves are food for other microbes. Understanding how life is sustained in our oceans is vital for coastal human populations that rely on the sea for food. Other people turn to marine microbes for new biotechnologies, or hope that by understanding them we might understand our own planet?s climate history and how marine microbes will respond to global warming and ocean acidification. Satisfies one of the three required modules for the Integrative Experience requirement for BA-MicBio or BS-MicBio majors.
Description of the structure and function of key aspects of microorganisms and approaches to their study. Topics include cell structure, bacterial growth, energy generation, biosynthesis of macromolecules, and the integration of these processes in an environmental context. Emphasis is on modern approaches to these topics using biochemistry and genomic tools. Prerequisite: MICROBIO 310